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Abstract

To solve a task using reinforcement learning, we require a reward function which

correctly specifies the task’s objective. However, such reward functions are hard

to construct for complex, real-world tasks. An alternative is to learn a model of

that reward function from human feedback, an approach called reward modelling.

This dissertation considers feedback in the form of preferences about an agent’s

behaviour. Reward modelling should be efficient, to avoid putting too much burden

on the human giving feedback. An approach to improve efficiency is active learning:

acquiring preferences on the behaviour about which the reward model is the most

uncertain. Previous work applied one instantiation of active learning to reward

modelling, but the results were mixed [Christiano et al., 2017]. In this dissertation,

we conduct a detailed study into whether active learning can be used to improve the

efficiency of reward modelling. Specifically, we propose and test different hypotheses

to explain the mixed results in previous work. We find that whether active learning

improves on the random acquisition of preferences depends on two properties, which

have strong dependencies on the environment and task. Accordingly, we suggest

that future work in reward modelling should use environments and tasks which

increasingly resemble its intended real-world applications.
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Part I

Background



Chapter 1

Introduction

Reinforcement Learning (RL) has made rapid progress in recent years at complex

tasks such as playing Go [Silver et al., 2016] and StarCraft II [Vinyals et al., 2019].

In their current form, the success of these systems relies on the objectives of the task

being well-defined. Specifically, they require that the objectives can be expressed as

a reward function, which defines goals in terms of the reward associated with taking

a given action when the world is in a given state. In the cases of Go and StarCraft,

the game score function provides this.

However, real-world tasks lack such obvious reward functions. Therefore, if we

aspire to use RL to assist us in the real world, we need some other method of

specifying our intentions. Put another way, we need to solve the agent alignment

problem [Leike et al., 2018, p. 1]:

How can we create agents that behave in accordance with the user’s in-

tentions?

So far, systems have been developed which allow users to communicate their in-

tentions by giving demonstrations and providing feedback (in the form of preferences

or scalar rewards) on the agent’s behaviour. For example, the inverse reinforcement

learning approach [Ng and Russell, 2000, Ziebart et al., 2008] uses demonstrations

by the user to infer their reward function. One can then use a standard RL algorithm

to train an agent on the inferred reward function, to follow the user’s intentions as

1



CHAPTER 1. INTRODUCTION 2

expressed in the demonstrations. Alternatively, the RL from preferences approach

[Christiano et al., 2017] queries the user for preferences about current agent be-

haviour, which it uses to learn the user’s reward function and then refine the agent’s

behaviour accordingly, again by standard RL techniques.

These systems have been prototyped in simple domains, such as Atari games

[Bellemare et al., 2013] and simulated robotics tasks [Todorov et al., 2012]. How-

ever, the technology is far from mature. For example, the RL from preferences

method requires on the order of thousands of user queries to learn to play simple

Atari games, and so may struggle to scale to much more complex tasks. Indeed,

an important property of any such system is to minimise the burden placed on the

user. Clearly, there is no point in trying to automate some task if the automation

procedure is even more demanding for the human than just performing the task

themselves. In other words, we desire systems trained on user feedback to make

sample efficient requests.

For this purpose, the RL from preferences method developed in [Christiano et al., 2017]

attempts to request only the most informative preferences from the user, a technique

known as active learning (AL). However, the results of applying this technique were

mixed; on some tasks and environments, it showed improvement over requesting

preferences uniformly at random, whilst for others, it made no significant difference,

or even impaired performance. The authors conjectured that their crude AL method

was at fault, but did not provide a detailed diagnosis or attempt to fix it. This com-

ponent of the system was omitted the subsequent work by [Ibarz et al., 2018].

Our contribution is to conduct a detailed study into whether AL can be used

to improve the efficiency of RL from user preferences, which we call active reward

modelling. Specifically, we propose and test different hypotheses to explain the

mixed results in [Christiano et al., 2017]. Consistent with their results, we find that

whether AL improves on the random acquisition of preferences depends on two

properties, which have strong dependencies on the environment and task. These

properties are: the number of preferences required to learn a good reward model,
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and the frequency with which the agent generates informative trajectories. This

environment-dependency is also consistent with current state of RL in general: it

is common for RL algorithmic innovations tested on certain combinations of tasks

and environments to fail to replicate when the task and environment are changed

[Henderson et al., 2018].

The dissertation is organised as follows. Part I lays out the relevant background

material. All this material rests on an understanding of deep neural networks, which

are explained in chapter 1. Chapter 2 outlines the basics of reinforcement learning.

Chapter 3 concerns techniques for equipping deep neural networks with the ability

to give estimates of the uncertainty in their output, which is used in active learning.

These chapters provide only short overviews of entire research fields, but should be

self-contained and give sufficient detail to allow the reader to assess our work. Part

II is concerned with our contribution. Chapter 5 explains our hypotheses for lack of

success of active reward modelling in the previous work [Christiano et al., 2017] and

outlines the basic active reward modelling training protocol with which we test our

hypotheses. Chapter 6 details the experiments we performed to test our hypotheses,

and the conclusions we drew from them. Chapter 7 summarises our contribution

and avenues for future work, and gives a discussion of personal development and the

relation of this dissertation to the material studied on the MSc course.



Chapter 2

Deep Neural Networks

The goal of a deep neural network (NN) is to approximate some function f∗ : X 7→ Y

[Goodfellow et al., 2016]. For example, in image classification, X may be image

pixels, and Y some image categories, for example, bird, plane or superhero. The

neural network specifies a mapping y = f(x; θ) that depends on some parameters θ.

The task is then to learn the θ that give the best approximation to the true function

f∗. A deep learning algorithm specifies how to do this.

As in machine learning in general, there are three key components to such an

algorithm: model (or function approximator), cost function and optimization pro-

cedure.

2.1 Model

The model, of course, is a deep NN. This simplest form of deep NN is a deep feedfor-

ward network1. They are called feedforward because when the model is evaluated

on input x, computation flows without ever feeding back into itself in a loop. They

are called networks because it is natural to think of these models as being com-

posed of many different functions, each of which is termed a layer. Starting from

the input layer, the output of each layer flows into the next, through each of the

hidden layers until the output layer is reaches and the function returns some value.

1They are also referred to as feedforward neural networks or multilayer perceptrons (MLPs)

4
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Deep feedforward networks are deep inasmuch as they have many hidden layers

[Goodfellow et al., 2016, p. 164].

Example 1. Consider a very simple feedforward NN f : R2 7→ R with one hidden

layer. f is composed of three functions: f(x) = f (3)(f (2)(f (1)(x))), where:

f (1)(x) = z = W1x for some 2× 2 matrix W1

f (2)(z) = a = ReLu(a) := max{0,a} where max(.) is applied pointwise

f (3)(a) = W2a for some 1× 2 matrix W2

2.2 Cost function

A cost function (or loss function) is some function that quantifies the performance

of our model i.e. how close it is to the true function f∗ we are trying to approximate.

Most modern NNs use the negative log-likelihood cost function2 [Goodfellow et al., 2016,

p. 138], which is simply the negative logarithm of the likelihood function. Given a

parametric family of probability distributions pmodel(x; θ) over the same space, a

likelihood function gives the probability of a set of observations for different set-

tings of the model parameters θ. More formally, consider a set of m i.i.d. examples

X = {x1, . . . ,xm} drawn from a true but unknown data generating distribution.

Then the likelihood function L(θ) is defined by:

L(θ) := pmodel(X; θ)

= Πm
i=1pmodel(xi; θ)

Taking the logarithm of this function improves numerical stability, and taking its

negative value is a convention because optimization in machine learning typically

means minimizing some function. Finally, we can divide by m, which shows how

we can interpret this function cost function as an expectation with respect to the

empirical distribution p̂data defined by the training data X. Notice that minimising

2This is also referred to as the cross-entropy loss function.
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this modified function will give the same result and maximising the likelihood. So,

we define the negative log likelihood cost function NLL(θ) as

NLL(θ) :=− 1

m
logL(θ)

=− 1

m

m∑
i=1

log pmodel(xi; θ)

=− Ex∼p̂data [log pmodel(x; θ)] (2.1)

and seek the parameters θML which minimise this function:

θML :=arg minθNLL(θ)

In this thesis, we will use NLL(θ) cost function. Our model pmodel is some

neural network. Importantly, the NN output must define a probability distribution,

which is implemented by making its final layer a softmax or Gaussian probability

density function, for categorical and real-valued data, respectively. Furthermore,

we actually use a slight generalisation of this procedure to estimate a conditional

probability pmodel(y | x; θ) where x ∈ X are some inputs and y ∈ Y some outputs

(also called targets) of the function f∗ : X 7→ Y we are trying to approximate. This

setting is called supervised learning, because the training data is a set of supervised

examples i.e. pairs of inputs and correctly labelled outputs. Finally, note that

in the real-valued case, using a Gaussian density function on the output of a NN

is equivalent to not passing the output values through the density function, and

instead simply minimising 1
m

∑m
i=1(ŷi − yi), the mean squared error between the

inputs and targets over the training data 〈(xi, yi)〉mi=1 where ŷi = f(xi), our model’s

prediction for input xi [Goodfellow et al., 2016, p. 132].

2.3 Optimization procedure

The third component of a deep NN algorithm is the optimization procedure. This

specifies how we use the cost function to update the NN parameters θ. Since NNs
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of interest are typically non-convex functions (due to non-linear layers such f (2) in

Example 1), Equation 2.1 cannot be optimized in closed form. Thus, we require

some numerical optimization procedure [Goodfellow et al., 2016, p. 151]; the most

common is some variation of gradient descent.

Gradient descent works by computing ∇θL(θ), the partial derivate of some cost

function L(θ) with respect to the model parameters θ. Since the partial derivate

of a function points in the direction of steepest ascent, selecting a new set of pa-

rameters θ′ = θ − ε ∇θL(θ) will mean that L(θ′) is less than L(θ) for some small

enough ε [Goodfellow et al., 2016, p. 83]. We can iteratively perform this procedure

and eventually reach a local minimum i.e. a point where L(θ) is lower than at all

neighbouring points. ε is called the learning rate; it is typically chosen by trying

several small values and choosing that which results in the lowest final L(θ).

If L(θ) is non-convex then there is no guarantee that this point will be a global

minimum i.e. a point where L(θ) takes its lowest possible value. Much machine

learning research is concerned with modifications to this procedure, and how to set

initial parameter values in order to avoid getting stuck in local minimum that lead

to poor performance. As it turns out, finding local minima that are low enough

often leads to very good performance.

One important modification is called stochastic gradient descent (SGD). Notice

that minimising Equation 2.1 via gradient descent requires computing

∇θNLL(θ) =
1

m
∇θ

m∑
i=1

− log pmodel(xi; θ)

on each iteration, which has computational complexityO(m) [Goodfellow et al., 2016,

p. 149]. For large training sets, this is infeasible.

SGD is based on the simple idea that this gradient is an expectation over the

training data which we can approximate using a small sample [Goodfellow et al., 2016,

p. 149]:

∇θNLL(θ) ≈ 1

m′
∇θ

m′∑
i=1

− log pmodel(xi; θ) (2.2)
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for some B = {x1, . . . ,xm′} ⊂ X called a minibatch, sampled uniformly at random

from X.

In this thesis, we use a further variant of SGD called RMSProp [Tieleman and Hinton, 2012].

This maintains individual learning rates for each model parameter and adapts them

individually. Specifically, on each learning update, parameter θi is rescaled accord-

ing to the inverse square root of an exponentially weighted moving average of the

historical squared values of the partial derivate of the cost function with respect to

θi. This results in larger learning updates for parameters with small partial deriva-

tives, and smaller learning updates for parameters with larger partial derivates. The

intention is to converge to a minimum more rapidly than SGD. Algorithm 1 gives

the precise procedure [Goodfellow et al., 2016, p. 304]. Note that the operations on

Algorithm 1 RMSProp.

Require: Global learning rate ε, decay rate ρ, initial parameters θ
1: Initialise r = 0 to accumulate squared gradients for each parameter
2: repeat
3: Sample minibatch B = {x1, . . . ,xm′}
4: Compute gradient g← 1

m∇θ
∑

i NLL(xi; θ)
5: Accumulate squared gradient r← ρr + (1− ρ)g � g
6: Update parameters: θ ← θ − ε√

r+10−6
� g

7: until convergence

lines 4-6 are all applied element-wise (that is, to each parameter individually). The

adding 10−6 to r on line 6 improves numerical stability.

This concludes our overview of deep neural networks. We now cover the basics

of Reinforcement Learning.



Chapter 3

Reinforcement Learning

Reinforcement learning (RL) refers simultaneously to a problem, methods for solving

that problem, and the field that studies the problem and its solution methods. The

problem of RL is to learn what to do—how to map situations to actions—so as to

maximise some numerical reward signal [Sutton and Barto, 2018, pp. 1-2]. More

specifically, the RL setting consists of an agent that interacts with an environment

by taking sequential actions. Each action taken affects the environment, which

responds by changing state. The agent then receives information about this new

state, and a corresponding numerical reward. The agent’s goal is to learn a policy

that maximises this reward over time. A policy is a specification of what action to

take in each state.

Our aim in this chapter is to introduce the necessary material for the reader

to understand the RL from preferences algorithm. To this end, we first show that

the RL Problem can be formalised as the optimal control of Finite Markov decision

processes. We then explain the idea of an RL solution method, and describe one

such method, Deep Q-Learning, that is called as a subroutine in the RL from pref-

erences algorithm. Next, we outline some approaches to adapting RL to settings

without reward functions. Finally, we explain in detail one such approach, RL from

preferences, which is the reward modelling algorithm that we use in this dissertation.

9



CHAPTER 3. REINFORCEMENT LEARNING 10

3.1 Finite Markov Decision Processes

Finite Markov Decision Processes (finite MDPs) are a way of mathematically for-

malising the RL problem: they capture the most important aspects of the problem

faced by an agent interacting with its environment to achieve a goal. We introduce

the elements of this formalism: the agent-environment interface, goals and rewards,

returns and episodes. We then explain three further important concepts in light of

this formalism: polices, value functions and the Bellman equations.

3.1.1 The Agent-Environment Interface

MDPs consist firstly of the continual interaction between an agent selecting actions,

and an environment responding by changing state, and presenting the new state to

the agent, along with an associated scalar reward. Recall that the agent seeks to

maximise this reward over time through its choice of actions.

Figure 3.1: A schematic of the agent-environment interface.

More formally, consider a sequence of discrete time steps, t = 1, 2, 3, . . . . At

each time step t, the agent receives some representation of the environment’s state,

St ∈ S, and chooses an action, At ∈ A. On the next time step, the agent receives

reward Rt+1 ∈ R ⊂ R, and finds itself in a new state, St+1. A schematic of this

interaction is show in 3.1. These interactions repeat over time, giving rise to a
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trajectory, τ :

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

A finite MDP is one where the sets of states, actions and rewards are finite.

In this case, the random variables St and Rt have well-defined discrete probability

distributions which depend only on the preceding state and action. This allows us

to define the dynamics of the MDP, a probability mass function p : S×R×S×A 7→

[0, 1], as follows. For any particular values s′ ∈ S and r ∈ R of the random variables

St and Rt, there is a probability of these values occurring at time t, given any values

of the previous state s ∈ S and action a ∈ A:

p(s′, r | s, a) := P
(
St = s′, Rt = r | St−1 = s,At−1 = a

)
.

A Markov Decision Process is one where all states satisfy the Markov property.

A state st of an MDP satisfies this property iff:

P (st+1, rt+1 | st, at, st−1, at−1, . . . , s0, a0) = P (st+1 | st, at) .

This implies that the immediately preceding state st and action at are sufficient

statistics for predicting the next state st+1 and reward rt+1.

3.1.2 Goals and Rewards

The reader may have noticed that we first introduced MDPs as a formalism for

an agent interacting with its environment to achieve a goal, yet have since spoken

instead of maximising a reward signal Rt ∈ R over time. Our implicit assumption

is the following hypothesis:

Hypothesis 1 (Reward Hypothesis). All of what we mean by goals and purposes

can be well thought of as the maximization of the expected value of the cumulative

sum of a received scalar signal (called reward). [Sutton and Barto, 2018, p. 53]
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However, this hypothesis gives no information about how to construct such a

scalar signal; only that it exists. Indeed, recent work has shown that it is far from

trivial to do so; possible failure modes include negative side effects, reward hacking

and unsafe exploration [Amodei et al., 2016]. This is central to the topic of this

dissertation—our aim is to improve the sample efficiency of one particular method

of reinforcement learning when the reward signal is unknown.

3.1.3 Returns and Episodes

Having asserted that we can express the objective of reinforcement learning in terms

of scalar reward, we now formally define this objective. Consider the following

objective:

Definition 1 ((Future discounted) return). Let a sequence of rewards between time

step t+1 and T (inclusive) be Rt+1, Rt+1, . . . , RT . Let γ ∈ [0, 1] be a discount factor

of future rewards. Then we define the (future discounted) return of this sequence of

rewards [Sutton and Barto, 2018, p. 57]:

Gt :=
∞∑
k=0

γkRt+k+1. (3.1)

One reason for introducing a discount factor is because we would like this infinite

sum to converge. Accordingly, we impose the condition that γ < 1 whenever the

reinforcement learning task is continuous, that is to say, there may be an infinite

number of non-zero terms in the sequence of rewards {Rt+1, Rt+2, Rt+3, . . . }.

The other kind of task is called episodic. Here, interactions between the agent

and environment occur in well-defined subsequences, each of which ends in a special

terminal state. The environment then resets to a starting state, which may be fixed

or sampled from a distribution. To adapt the definition in (3.1) to this case, we

introduce the convention that zero reward is given after reaching the terminal state.

This is because we typically analyse such tasks by considering a single episode—

either because we care about that episode in particular, or something that holds
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across all episodes [Sutton and Barto, 2018, p. 57]. Observe that summing to infinity

in (3.1) is then identical to summing over the episode, and that the sum is well-

defined regardless of the discount factor γ.

3.1.4 Policies and Value Functions

Policy determines the behaviour of the agent. Formally, a policy π : S ×A 7→ [0, 1]

defines a probability distribution over actions, given a state. That is to say, π(a | s)

is the probability of selecting action a if an agent is following policy π and in state

s.

The state-value function vπ : S 7→ R for a policy π gives the expected return of

starting in a state and following that policy. More formally,

Definition 2 (State-value function). Let π be a policy and s ∈ S be any state. We

write Eπ [.] to denote the expected value of the random variable Gt as defined in

(3.1). Then the state-value function (or simply, value function) for policy π is:

vπ(s) := Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
. (3.2)

The action-value function qπ : S × A 7→ R for a policy π is defined similarly. It

gives the expected return of starting in a state, taking a given action, and following

policy π thereafter.

Definition 3 (Action-value function). Let π be a policy, s ∈ S be any state and

a ∈ A any action. Then the action-value function (or, Q-function) for policy π is:

qπ(s, a) := Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]
. (3.3)

3.1.5 Optimal Policies and Optimal Value Functions

The problem of RL is to find an optimal policy : one which maximises expected

return. All optimal policies share the same value functions. We call these the

optimal state-value function, v∗, and the optimal action-value function q∗:
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Definition 4 (Optimal state-value function (from [Sutton and Barto, 2018, p. 62])).

v∗(s) := max
π

vπ(s) ∀s ∈ S.

Definition 5 (Optimal action-value function (from [Sutton and Barto, 2018, p. 63])).

q∗(s, a) := max
π

qπ(s, a) ∀s ∈ S ∀a ∈ A.

There is a simple connection between optimal Q-function and optimal policy

that will be used in Section 3.2:

Claim 1. If an agent has q∗, then acting according to the optimal policy when in

some state s is as simple as finding the action a that maximises q∗(s, a) [Sutton and Barto, 2018,

p. 64].

3.1.6 Bellman Equations

These value functions obey special recursive relationships called Bellman equations.

The equations are proved by formalising the simple idea that the value of being in

a state is the expected reward of that state, plus the value of the next state you

move to. Each of the four value functions defined in Sections 3.1.4 and 3.1.5 satisfy

slightly different equations. We prove the Bellman equation for the value function.

The remaining three equations have similar proofs [Sutton and Barto, 2018] and are

stated here for completeness.

Proposition 1 (Bellman equation for vπ [Sutton and Barto, 2018, p. 59]). Let π

be a policy, p the dynamics of an MDP, γ a discount factor and vπ a state-value

function. Then:

vπ(s) = E
a∼π(.|s)

s′,r∼p(.,.|s,a)

[
r + γvπ(s′)

]
(3.4)



CHAPTER 3. REINFORCEMENT LEARNING 15

Proof.

vπ(s) := Eπ [Gt | St = s]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]

= Eπ [Rt+1 + γGt+1]

=
∑
a∈A

π(a | s)
∑
s′∈S
r∈R

p(s′, r | s, a)
[
r + γEπ

[
Gt+1 | St+1 = s′

]]
=
∑
a∈A

π(a | s)
∑
s′∈S
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
= E

a∼π(.|s)
s′,r∼p(.,.|s,a)

[
r + γvπ(s′)

]

Proposition 2 (Bellman equation for qπ). Let π be a policy, p the dynamics of an

MDP, γ a discount factor and qπ an action-value function. Then:

qπ(s, a) = E
s′,r∼p(.,.|s,a)

[
r + γ E

a′∼π(.|s′)

[
qπ(s′, a′)

]]
(3.5)

Proposition 3 (Bellman equation for v∗ [Sutton and Barto, 2018, p. 63]). Let p

be the dynamics of an MDP, γ a discount factor and v∗ an optimal value function.

Then:

v∗(s) = max
a∈A

E
s′,r∼p(.,.|s,a)

[
r + γv∗(s

′)
]

(3.6)

Proposition 4 (Bellman equation for q∗ [Sutton and Barto, 2018, p. 63]). Let p be

the dynamics of an MDP, γ a discount factor and q∗ an optimal Q-function. Then:

q∗(s, a) = E
s′,r∼p(.,.|s,a)

[
r + γ max

a′∈A

[
q∗(s

′, a′)
]]

(3.7)
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3.2 Reinforcement Learning Solution Methods

One method of solving the reinforcement learning problem is to explicitly solve a

set of Bellman optimality equations. For example, in a finite MDP with n states

and m actions, the Bellman equations for q∗ are a set of n ·m equations in n ·m

unknowns1. Given the dynamics p of the MDP, standard techniques for solving

systems of equations can be applied. Then, via Claim (1), the agent has an optimal

policy [Sutton and Barto, 2018, p. 64].

However, in reality, we rarely have access to p, or sufficient computational re-

sources to solve this system of equations exactly [Sutton and Barto, 2018, p. 66].

Thus, much of the recent literature on RL solution methods focuses on finding ap-

proximate solutions.

In particular, there has been rapid development in a class of solution methods

called deep reinforcement learning. The idea is to use a deep neural network to

approximate some function that will yield an optimal policy. Typically, we approx-

imate the optimal value function—this is called Q-learning—or the optimal policy,

directly—in which case it is termed policy optimization2.

In this section, we explain in detail one particular deep reinforcement learning

solution method, the deep Q-network, which is important for the rest of this thesis.

3.2.1 Deep Q-network

The idea of a deep Q-network (DQN) is simply to use a deep NN to approximate

the optimal Q-function q∗ using a deep neural network Q(s, a; θ) as the function ap-

proximator [Mnih et al., 2015]. The agent-environment interactions yield experience

〈(st, at, rt+1, st+1)〉Tt=0 which can be used as training data. We can then simply per-

form gradient descent on the parameters θi at iteration i to reduce the mean squared

error between predictions Q(s, a; θi) and targets given by the Bellman equation for

q∗(s, a), from Proposition 4. Since we do not have access to the true value of these

1This assumes that the agent can take any action in any state.
2Some methods, such as DDPG [Lillicrap et al., 2015], TD3 [Fujimoto et al., 2018] and SAC

[Haarnoja et al., 2018] approximate both the optimal value function and the optimal policy.
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targets, we instead use approximate target values y = r +maxa′ Q(s′, a′; θ−i ), with

θ−i some previous network parameters.

So far, this looks very similar to the supervised learning setting. However, there

are three important differences that come with reinforcement learning. There are

two sources of correlations: both (i) in the data set, and (ii) between Q(s, a; θi)

and the targets. Furthermore, (iii) updates to Q may change the policy and thus

change the data distribution. This leads to instability in training. To address this,

the authors propose two algorithmic innovations. Firstly, instead of training on ex-

perience in the order that it is collected, the agent maintains a buffer of experience

Dt = {e1, e2, . . . , et} where et = (st, at, rt+1, st+1). When making learning updates,

drawing minibatches uniformly at random from this buffer breaks correlations in

the experience sequence and smooths over changes in the data distribution, allevi-

ating problems (i) and (iii). This is termed experience replay. Secondly, to reduce

correlations between Q and the targets and alleviate problem (ii), the approximate

target values are updated to match the parameters Q only every C steps for some

hyperparameter C > 1.

With these changes, we arrive at a loss function `i(θi) for each learning update

i:

`i(θi) = Es,a,r
[
(Es′ [y | s, a]−Q(s, a; θi))

2
]

= Es,a,r
[
Es′ [y −Q(s, a; θi) | s, a]2

]
= Es,a,r

[
Es′
[
(y −Q(s, a; θi))

2 | s, a
]
− Vars′ [y −Q(s, a; θi)) | s, a]

]
= Es,a,r,s′

[
(y −Q(s, a; θi))

2
]
− Es,a,r [Vars′ [y]]

where the expectations and variances are with respect to samples from the experience

replay. This loss function is then optimized by stochastic gradient descent with

respect to the network parameters θi. Note that the final term is independent of

these parameters, so we can ignore it. Finally, the authors found that stability is

improved by clipping the error term y −Q(s, a; θi) to be between −1 and 1.
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We summarise this training procedure in Algorithm 2. To ensure adequate ex-

ploration, the agent’s policy is ε-greedy with respect to the current estimate of the

optimal action-value function.

Algorithm 2 Deep Q-learning with experience replay.

1: Initialise replay memory D to capacity N
2: Initialise neural network Q with random weights θ as approximate optimal

action-value function
3: Initialise neural network Q̂ with identical weights θ− = θ as approximate target

action-value function
4: Reset environment to starting state s0
5: for t = 0, . . . , T do
6: With probability ε execute random action at
7: otherwise execute action at = arg maxaQ(st, a; θ)
8: Observe next state and corresponding reward st+1, rt+1 ∼ p(., . | st, at)
9: Store transition (st, at, rt+1, st+1) in Dt

10: Randomly sample minibatch of transitions (sj , aj , rj+1, sj+1) ∼ Dt

11: Set yj =

{
rj+1 if episode terminates at step j + 1

rj+1 + γmaxa′ Q̂(sj+1, aj ; θ
−) otherwise

12: Do gradient descent on (yj −Q(sj , aj ; θ))
2 w.r.t network parameters θ

13: Every C steps set θ− = θ
14: end for

Note that line 11 assumes we are training DQN to perform an episodic task,

hence the first case which follows the convention given in Section 3.1.3 whereby

zero reward is given for all states after the terminal state. If the task were instead

continuing, line 11 would simply be yj = rj+1 + γmaxa′ Q̂(sj+1, aj ; θ
−).

3.3 Reinforcement Learning from Unknown Reward Func-

tions

So far, we have assumed that as the agent interacts with the environment, it re-

ceives both information about the next state and the associated scalar reward. This

presents an obvious challenge if we want to apply RL to solve real-world problems:

since the world does not give scalar rewards, it seems we would have to manually

specify a reward function mapping states of the world to rewards. For complex or

poorly defined goals, this is difficult to do. If we try instead to design an approxi-
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mate reward function, an agent optimizing hard for this objective will do so at the

expense of satisfying our preferences [Christiano et al., 2017, p. 1].

To circumvent this issue, a growing body of work studies how to do RL from

various forms of human feedback, instead of an explicit reward function. Three

main feedback methods have been studied, all of which involve a human-in-the-

loop providing information to the agent about the desired behaviour. Firstly, an

agent may learn from expert demonstrations. This may involve using demon-

strations to infer a reward function, an approach known as inverse reinforcement

learning [Ng and Russell, 2000, Ziebart et al., 2008]. One can then use a stan-

dard RL algorithm on this recovered reward function. Other methods involve

training a policy directly from demonstrations, referred to as imitation learning

[Ho and Ermon, 2016, Hester et al., 2017].

Secondly, an agent may learn from feedback on its current policy in the form

of scalar rewards [Knox and Stone, 2009, Warnell et al., 2017]. Instead of providing

a set of demonstrations, the human-in-the-loop observes the agent’s behaviour and

gives an appropriate reward. If it is assumed that the human provides this rein-

forcement according to some latent reward function r̂ : S × A 7→ R, then standard

supervised learning techniques can be applied to model this function. The agent

can then select actions so as to maximise expected modelled reward. This approach

differs from manually specifying a reward function because the human does not pro-

vide a precise function mapping all possible state-action pairs to rewards in advance.

Rather, the human remains in the loop, providing reinforcement to the agent in an

online fashion.

Finally, an agent may learn from binary preferences over trajectories [Wilson et al., 2012,

Christiano et al., 2017]. As with the policy feedback method, the human-in-the-loop

observes the agent’s behaviour. However, instead of giving reinforcement in the

form of scalar rewards, they are periodically presented with a pair of trajectories

and must indicate which they prefer3. Given some assumptions about how the hu-

3The human also has the option of expressing indifference, or that the trajectories are incompa-
rable.
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man’s preferences relate to their latent reward function, we can again model r̂ by

supervised learning. Then, standard RL algorithms can be applied to maximise the

expected r̂ over time.

Each of these methods have shown promising results, and some of the advantages

and disadvantages are summarised in Table 3.1.

Property Trajectory pref-
erences

Expert demon-
strations

Policy feedback

Demandingness for
human

Human only needs
to judge outcomes

Human needs to
perform task (ex-
pertly)

Human needs to
provide suitable
scalar rewards

Upper bound on
performance?

Superhuman per-
formance is possi-
ble

Impossible to sig-
nificantly surpass
performance of
expert

Superhuman per-
formance is possi-
ble

Suitability to
exploration-heavy
tasks

Limited4 Well suited, since
demonstrations can
guide exploration

Limited5

Communication
efficiency

On the order of
hundreds of bits
per human hour

Much richer in
information than
trajectory prefer-
ences 6

Scalar rewards
provide richer in-
formation than
binary preferences
over trajectories,
but not as rich as
demonstrations

Computational
efficiency (in simple
Atari environ-
ments)

On the order of 10
million RL time
steps

On the order of 10
million RL time
steps

On the order of
thousands of learn-
ing time steps 7

Table 3.1: Summary of the properties of using different forms of human feedback in RL without
a reward function.

Noticing that the properties on which learning from preferences performs poorly

are precisely those on which learning from demonstrations performs well, it is intu-

4The human can only give feedback on states visited by the agent. If the agent does not ex-
plore well, this limits the amount of information the human can convey. Naively, exploration is
determined by the inferred reward function, which may lead to a problematic circularity: if the
initialised reward model maps some subset of the state space to low reward, the agent will never
explore here, and so the human will never have the chance to give feedback about these states.

5See footnote 4
6[Ibarz et al., 2018] show that demonstrations half the amount of human time required to

achieve the same level of performance
7Note that the work which prototypes this method trains, with an unspecified amount of com-

pute, a deep autoencoder to extract 100 features from the Atari game screen before commencing
the RL stage. The other methods do not do such pretraining, thus the reported results may not
give a fair comparison.
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itive to think that a combination of feedback methods will give better performance

than either one individually. Recent work has confirmed this intuition. Specifically,

[Ibarz et al., 2018] test this method on nine Atari games [Bellemare et al., 2013],

and show that combined preferences and demonstrations outperform only demon-

strations on eight games, and only preferences on the four exploration-heavy games8.

[Palan et al., 2019] show that in a 2D driving simulator [Bıyık and Sadigh, 2017]

and two OpenAI Gym environments [Brockman et al., 2016b], using just one expert

demonstration reduces by a factor of 3 the number of human preferences required

to achieve the same performance [Palan et al., 2019, p. 6].

This dissertation concerns using active learning to improve the performance of

reward learning from trajectory preferences. So far, work on feedback from prefer-

ences has taken two different approaches: training a reward model on handcrafted

features of the environment, and taking the deep learning approach of training a re-

ward model end-to-end without handcrafted features. As active learning has already

been shown to improve performance in the former setting [Bıyık and Sadigh, 2017],

we focus on applying active learning in the latter setting. Algorithmic innovation in

this setting is also more exciting, because if we want to scale RL to real-world tasks,

it is unlikely that we will be able to handcraft all the correct features.

In the remainder of this section, we explain in detail the algorithm used for the

latter approach, which was developed in [Christiano et al., 2017]. We then sum-

marise briefly the difference in learning from preferences with handcrafted features,

in which active learning has already been applied successfully.

3.3.1 Reward Learning from Trajectory Preferences in Deep RL

Setting

The agent-environment interface is as described in Section 3.1.1, with the modifica-

tion that on step t, instead of receiving reward Rt+1 ∈ R ⊂ R, there is an annotator

8The contribution of demonstrations in games without difficult exploration is not signifi-
cant, except for in two games where demonstrations are harmful compared to using only pref-
erences. The authors hypothesise that this is due to the relatively poor performance of the expert
[Ibarz et al., 2018, p. 6]
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who expresses preferences between trajectory segments, or clips. A clip is a finite

sequence of states and actions ((s0, a0), (s1, a1), . . . , (sk−1, ak−1)) ∈ (S ×A)k. If the

annotator prefers some clip σ1 to another clip σ2, write σ1 � σ2. The annotator may

also be indifferent between the clips, in which case we write σ1 ∼ σ2. The agent does

not see the annotator’s implicit reward function r : S × A 7→ R, and must instead

use the preferences expressed by the annotator to maximise r over time. This is the

goal of reward learning from trajectory preferences.

If the annotator could write down their true r, then clearly we could perform

traditional RL instead of taking the reward learning approach. However, as we

noted above, we are interested in applying RL to tasks for which we do not have

the true r, which is when reward learning is useful. Nonetheless, for the purposes of

quantitatively evaluating the method, we consider tasks for which we do have access

to the true r.

Method

The method has two components: a policy π : S × A 7→ [0, 1] and an estimate of

the annotator’s reward function, r̂ : S × A 7→ R, called a reward model or reward

predictor. Both components are parametrised by a deep neural network. The agent

learns to maximise the annotator’s implicit reward function over time by iterating

through the following three processes:

1. Reinforcement learning by a traditional deep RL algorithm whereby policy π

interacts with the environment for T steps and updates its parameters to op-

timise r̂ over time. Agent experience E = ((s0, a0), (s1, a1), . . . , (sT−1, aT−1))

is stored.

2. Select pairs of clips (σ1, σ2) from E, request a preference µ from the annotator

on each sampled pair, and add the labelled pair to the annotation buffer A.

3. Supervised learning to train the reward model on A, the preferences expressed

by the annotator so far.
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More detail on each process is provided below.

Process 1: Training the policy

As mentioned, process 1 is akin to traditional RL except r̂ is used in place of the

environment reward r. There are two subtleties to mention. Firstly, since r̂ is

learned while RL is taking place, [Christiano et al., 2017] prefer policy optimization

methods over Q-learning, as these have been successfully applied to RL tasks with

a non-stationary reward function [Ho and Ermon, 2016]. Specifically, they use A2C

[Mnih et al., 2016] and TPRO [Schulman et al., 2015]. However, the follow up paper

[Ibarz et al., 2018] uses a Q-learning method9, DQfD [Hester et al., 2017], and it

is not clear that performance is impaired. Hence, the literature is ambiguous on

whether a non-stationary reward function is necessarily problematic for Q-learning.

Secondly, since the reward model r̂ is trained only on pairwise comparisons, its

scale is underdetermined. Previous work therefore proposes periodically normalising

r̂ to have zero mean and constant standard deviation over the examples in A. This

is crucial for training stability since deep RL is sensitive to the scale of rewards.

Process 2: Selecting and annotating clip pairs

Previous work uses two methods for selecting clip pairs. [Ibarz et al., 2018] sample

uniformly at random from E. [Christiano et al., 2017] train an ensemble of three

reward predictors and select the clip pairs with the maximum standard deviation

across the ensemble. Roughly this favours clip pairs on which the model is most

uncertain, with the hope of improving sample efficiency (that is to say, being able to

learn r̂ with fewer labels from the annotator). However, they found that relative to

random selection, this sometimes impaired performance and slowed down training.

In Section 5.3 we consider what caused this.

The selected clip pairs σ1, σ2 are then annotated with a label µ, indicating which

clip is preferred. µ is a distribution over {1, 2} where µ(1) = 1, µ(2) = 0 if σ1 � σ2;
9The reason for deviating from the recommendation in [Christiano et al., 2017] is that

[Ibarz et al., 2018] combine reward learning from trajectory preferences and expert demonstrations,
and DQfD is state-of-the-art for the latter problem.
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µ(1) = 0.5, µ(2) = 0.5 if σ1 ∼ σ2; or µ(1) = 0, µ(2) = 1 if σ2 � σ1. The triples

(σ1, σ2, µ) are then added to A. The majority of previous work uses a synthetic

annotator rather than an actual human. Labels are simply generated according

to the (hidden) ground truth reward function r, where σ1 � σ2 if
∑

t r(s
1
t , a

1
t ) >∑

t r(s
1
t , a

1
t ); σ

1 ∼ σ2 if
∑

t r(s
1
t , a

1
t ) =

∑
t r(s

1
t , a

1
t ); and σ2 � σ1 otherwise. This

facilitates quicker experimentation and more clear performance metrics (by using

hidden ground truth reward function to evaluate agent performance and reward

model alignment).

Process 3: Training the reward model

The training of r̂ is based on the following assumption:

Assumption 1. The annotator’s probability of preferring clip 1 to clip 2, P̂ (σ1 �

σ2) is equal to the softmax function evaluated on the value of r̂ summed over the

two clips.

More precisely:

P̂ (σ1 � σ2; r̂) =
exp

∑
t r̂(s

1
t , a

1
t )

exp
∑

t r̂(s
1
t , a

1
t ) + exp

∑
t r̂(s

2
t , a

2
t )

(3.8)

We can then fit the parameters of r̂ by treating the problem as binary classification.

In other words, we can use standard supervised learning techniques to optimize the

parameters of r̂ so as to minimise the cross-entropy loss between the predictions in

3.8 and the annotator’s labels.

loss(r̂) = −
∑

(σ1,σ2,µ)∈A

µ(1) log P̂ (σ1 � σ2; r̂) + µ(2) log P̂ (σ2 � σ1; r̂) (3.9)

Assumption 1 follows the Elo rating system developed for chess [Elo, 1978]. Given

a zero-sum game and two players with a scalar rating, Elo specifies a mapping from

player ratings (in our case: reward) to the probability of each player winning (in our

case: the probability of each clip being preferred by the annotator).
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3.3.2 Reward Learning from Trajectory Preferences with Hand-

crafted Feature Transformations

Setting

[Bıyık and Sadigh, 2017] consider a more narrow setting. There are two vehicles,

H which is “human driven”, and R which is a “robot”. The vehicles are in a 2D

environment with each obeying a simple point-mass dynamics model, with state

space S:

[ẋ ẏ θ̇ v̇] = [v · cos(θ) v · sin(θ) v · u1 u2 − α · v]

where v and θ are vehicle velocity and direction respectively. The action space

A is [u1, u2] which represent steering and acceleration respectively. α is a friction

coefficient.

They assume that r̂ : S ×A 7→ R is a linear combination of a set of five features:

r̂(s, a) = wTφ(s, a).

These five weights w = [w1, w2, w3, w4, w5] are handcrafted, and correspond to (i)

distance to road boundary, (ii) distance to centre of road lane with an extra penalty

for shifting lane, (iii) difference between vehicle speed and the speed limit, (iv) dot

product between θ and a vector pointing along the road, and (v) a non-spherical

Gaussian over the distance from R to H (to penalise collisions).

Like [Christiano et al., 2017], there is annotator who is queried for preferences

on trajectory segments. Some wtrue is specified in advance, and the annotator uses

this to answer the queries as in Process 2 of [Christiano et al., 2017].

Method

[Bıyık and Sadigh, 2017] do not attempt to train a policy using the learned reward

model. Their performance metric is simply the expected similarity of the true and
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predicted feature weights:

m = E
[

w ·wtrue

|w||wtrue|

]

They generate queries by solving a constrained optimization problem to find the

two trajectory segments that will maximise the volume removed from the hypoth-

esis space. Using the same mapping from reward space to preference space as

[Christiano et al., 2017] (Equation 3.8), they start with a uniform prior over the

space of all w (uniform over the unit ball), generate a query, get a preference from

the annotator, and perform a Bayesian update on this labelled clip pair. Thanks to

the simple function form of their reward model, this Bayesian update has a closed

form solution. They repeat this procedure until the reward model is close to the

true reward function, according to m.

This concludes the background material on Reinforcement Learning. We move

to the final chapter of part I, which provides context on uncertainty in deep learning.



Chapter 4

Uncertainty in Deep Learning

If we are to use deep NNs for practical applications, it is crucial that they output

not only point estimates, but also their uncertainty in those estimates. For example,

suppose a deep NN is being used to drive an autonomous vehicle. If it encounters a

situation in which it is uncertain about whether to brake or not, we probably want

it to hand over control to a human driver. Equally, if a deep NN is being used for

medical diagnosis and is confronted with an unfamiliar stimulus, it should request

more data or alert a human doctor. In Section 2, we explained that NNs can output

probability distributions. For example, with categorical data, the final layer of the

network is typically the softmax function, which gives the probability of the input

being in each of the possible classes. However, such probability distributions do not,

in fact, accurately reflect uncertainty [Gal, 2017, p. 13].

In this chapter, we first summarise some of the techniques used to equip NNs

with the ability to output uncertainty estimates alongside point estimates. We then

explain how such uncertainty estimates can be applied to the problem of active

learning (AL). Having understood AL, the reader will be equipped with all the

prerequisites to understand the application of AL to Reward Modelling.

27
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4.1 Bayesian Neural Networks

Bayesian neural networks (BNNs) different from standard NNs in that they main-

tain a distribution over their weights rather than point estimates. We require an

algorithm for learning from data. The mathematically optimal way to do this for

BNNs is to perform Bayesian inference on the weights on the network, i.e. compute

a posterior distribution over the weights, given the training data. Then, given the

posterior distribution over weights, to answer predictive queries we take expectations

under this distribution:

P (ŷ | x̂) = EP (w|D) [P (ŷ | x̂, w)]

However, this method of inference is intractable for deep learning models that have

millions, or even billions, of parameters. Instead, we need to find an approximation

to the true posterior.

Variational Inference (VI) is one such approximation method. Historically, many

of the attempts to perform VI on BNNs were impractical. For example, Bayes by

Backprop [Blundell et al., 2015], requires doubling the number of model parameters,

making training more computationally expensive, and is very sensitive to hyperpa-

rameter tuning. An alternative is MC-Dropout, where we use dropout1 at test time.

[Gal, 2017] showed that this approximates VI on BNNs.

The second method is by using a Deep Ensemble [Lakshminarayanan et al., 2017].

The idea is simply to train a collection of NNs, with different random weight initial-

isations, using different randomly sampled minibatches of training data. Computing

a forward pass through component of the ensemble separately then functions as if

we were drawing samples from a posterior distribution. This does not actually per-

form a Bayesian approximation but nonetheless has been shown to give good quality

uncertainty estimates in practice [Beluch et al., 2018].

1Dropout [Srivastava et al., 2014] was first formulated as a regularisation technique. The idea is
to remove a randomly sampled subset of NN weights when computing each forward pass through
the network.
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Equipped with a method to draw samples from an approximate posterior, we

can use this method to get uncertainty estimates. In this dissertation, we are inter-

ested in the classification setting. The next section explains how to get uncertainty

estimates in this setting, and use them in active learning.

4.2 Active Learning

Supervised learning makes use of labelled training data. However, for many real-

world problems, obtaining labelled data is expensive. For example, constructing a

dataset for image classification requires a human to specify the class of every image

in training data. Active learning [Cohn et al., 1996] is a framework for training a

model to a particular accuracy while minimising the need for labelled data. The idea

is to acquire only the data that is most informative about the model parameters.

The key ingredient in active learning is called an acquisition function. Given a model

M and pool data Dpool ⊂ X, an acquisition function a : X ×M 7→ R quantifies

how informative the label of an element x ∈ Dpool would be to the model. This

determines the next x to query the oracle for a label. An oracle is operationalised as

a function which can be queried for the true label of an example, incurring some cost

[Gal et al., 2017]. More precisely, we acquire each new training datum x∗ according

to:

x∗ = arg maxx∈Dpool
a(x,M)

Acquisition functions are often based on uncertainty estimates, corresponding with

the intuition that it is good to acquire data about which the model is currently

uncertain. In this section, we review some common acquisition functions for clas-

sification tasks2 and then discuss how BNNs can provide the uncertainty estimates

that these functions require.

2Different acquisition functions are used for regression tasks, typically based on predictive vari-
ance [Gal, 2017, p. 47] which we do not cover here.
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4.2.1 Max Entropy

One natural idea is to acquire x ∈ Dpool with the highest entropy [Shannon, 1948]

given the current training data Dtrain. Entropy is a key concept in information

theory. Given a predictive distribution p : X × Y 7→ [0, 1] (i.e. a model which

predicts the probability of input x being in class y) trained on dataset Dtrain, the

predictive entropy of a new input x formalises how uncertain p is about the label of

input x [Gal, 2017, p. 52]:

H [y | x,Dtrain] = −
∑
c

p(y = c | x,Dtrain) log p(y = c | x,Dtrain) (4.1)

where the sum is over the possible classes c of label y.

Example 2. Consider the binary classification case where we have two classes i.e.

c ∈ {0, 1}. Given some input x, if the model p predicts 0.5 for both classes, i.e.

p(y = 0 | x,Dtrain) = p(y = 1 | x,Dtrain) = 0.5 then H [y | x,Dtrain] will take

its maximum value of log(2), corresponding with the intuition that the model is

maximally uncertain as to the label of x because it predicts label 0 and label 1 with

equal probability. The other extreme is when the model predicts exactly 0 or 1 for

the label of x. In this case H [y | x,Dtrain] = 0. The model is already certain about

the label of x (and it would be pointless to acquire its label).

4.2.2 Bayesian Active Learning by Disagreement

Whilst acquiring points by maximising entropy seems like a reasonable idea, one

might wonder whether the data on which the model is the most uncertain are actually

the most informative data to acquire. Consider that the pool might contain data

which are inherently ambiguous, like a handwritten digit that is a borderline case

between a 1 and a 7. It might not be very helpful to acquire such points, because their

labels do not actually resolve any uncertainty about the model parameters. Such

data are said to have high aleatoric uncertainty, i.e. “irreducible” uncertainty, due

to noise inherent in the data, which cannot be resolved given more data [Gal, 2017,
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p. 7].

On the contrary, it seems better to acquire data about which the model is un-

certain, but which also help to resolve uncertainty. Such data is said to have high

epistemic or model uncertainty. We claimed that predictive entropy as in Equation

4.1 represents a model’s total uncertainty in its prediction. Total uncertainty com-

prises both that arising from noisy data, and uncertainty about model parameters

and class. In other words, predictive uncertainty is sum of aleatoric and epistemic

uncertainty.

Now, how can we specify an acquisition function that selects data which has high

epistemic but low aleatoric uncertainty? For reasons which will soon become clear,

we denote epistemic uncertainty as I [y,w | x,Dtrain] where w are the parameters

of our model. This is called mutual information between the prediction y and the

model parameters w. Since we now consider uncertainty in both data and the model

parameters, we need some extra notation. Consider our model parameters w ∼ p(. |

Dtrain) to be sampled from a distribution over model parameters, which depends

on the dataset on which the model has been trained. Now, we can write aleatoric

uncertainty as expected predictive entropy, where the expectation is over draws of

our model parameters: Ep(w|Dtrain) [H [y | x,w]]. This formalises the intuition that

aleatoric uncertainty is high if, even when model uncertainty is removed (because we

consider only a single draw of the model parameters), predictive entropy is still high.

In this case, the uncertainty can only be coming from noise in the data. Conversely,

if we take average over the model parameters, leaving only aleatoric uncertainty,

and predictive entropy is low, then aleatoric uncertainty must be low.

Putting this all together, we arrive at a formalisation of epistemic uncertainty,

in terms of the difference between predictive and aleatoric uncertainty [Gal, 2017,
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p. 53]:

I [y; w | x,Dtrain] = H [y | x,Dtrain]− Ep(w|Dtrain) [H [y | x,w]]

= −
∑
c

p(y = c | x,Dtrain) log p(y = c | x,Dtrain)

+ Ep(w|Dtrain)

[∑
c

p(y = c | x,w) log p(y = c | x,w)

]
(4.2)

There is an alternative way to arrive at this formalisation of epistemic uncer-

tainty, which is the reason for denoting it as I [y,w | x,Dtrain]. The mutual informa-

tion between two random variables I [X;Y ] quantifies the information gained about

X by observing Y . Thus, I [y,w | x,Dtrain] quantifies the information gained about

the model parameters by observing the label y of input x, given the current training

data Dtrain, which sounds like a good metric for an acquisition function. By the

definition of mutual information we can arrive at the same result as in Equation 4.2:

I [y; w | x,Dtrain] : = H [y | x,Dtrain]− Ep(w|Dtrain) [H [y | x,w]]

Using this objective as an acquisition function was first proposed in [Houlsby et al., 2011].

Their intuition that it seeks to acquire examples on which particular settings of the

model parameters are highly confident, but in disagreement with each other, or in

the language used above, on which aleatoric uncertainty is low but epistemic uncer-

tainty is high. They called this objective Bayesian Active Learning by Disagreement

(BALD).

Example 3. Again, consider the binary classification setting. In the second case

presented in Example 2 when individual draws of the model parameters always predict

either 0 or 1, then (as with Max Entropy), I [y; w | x,Dtrain] = 0. There is no

disagreement on the label of x between different draws of the model parameters, and

so the epistemic uncertainty is zero. However, in the first case, where individual

draws of the model parameters always predict 0.5, then we get I [y; w | x,Dtrain] =

H [y | x,Dtrain]−Ep(w|Dtrain) [H [y | x,w]] = log(2)−log(2) = 0. While this input has
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high predictive entropy, its label would not be very informative to the model, because

the predictive entropy is due entirely to noise (which cannot be explained away given

more data) rather than epistemic uncertainty. For an example which will score

highly with respect to BALD, suppose that sequential draws of the model parameters

predict the label of some input x to be 0, 1, 0, 1, 0, 1 . . . . Then I [y; w | x,Dtrain] =

log(2)− 0 = log(2). For each draw of the model parameters, the resulting prediction

has high confidence; but there is high disagreement between these predictions given

different model parameters.

4.2.3 Variation Ratios

Maximising the Variation Ratios [Freeman, 1965] is similar to Max Entropy in that

it seeks the x on which the model has high predictive uncertainty. The difference is

that it does not have an information theoretic formalisation. Instead,

variation-ratio[x] := 1−max
c
p(y = c | x,Dtrain)

Observe that this metric will be low in the second case presented in Example 2,

because for the class y that is always predicted by the model, p(y | x,Dtrain) = 1

and so variation-ratio[x] = 0. Conversely, it will achieve its maximum value of 0.5

(in the binary setting) in the first case in Example 2, because p(y = 0 | x,Dtrain) =

p(y = 1 | x,Dtrain) = 0.5. Thus, it is open to the same failure mode as Max Entropy:

acquiring data with high aleatoric but low epistemic uncertainty.

4.2.4 Mean STD

Finally, an approach which derives from the regression literature, but can also be

applied to classification, is to acquire points that maximise the mean standard de-

viation σ(x), where the mean is taken over the different classes c that input x can
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take [Kampffmeyer et al., 2016, Kendall et al., 2015].

σc =
√

Ep(w|Dtrain) [p(y = c | x,w)2]− Ep(w|Dtrain) [p(y = c | x,w)]2

σ(x) =
1

C

∑
c

σc (4.3)

This acquisition function has similar properties to BALD in that it standard de-

viation, like disagreement, will avoid data with high aleatoric and low epistemic

uncertainty. This can be seen as follows: if different draws of the model parameters

predict the label of input x to be always 0.5, as in the first case in example 2, the

standard deviation of these samples is zero.

4.2.5 Approximating acquisition functions with Bayesian Neural

Networks

In essence, evaluating each of the above acquisition functions requires computing

one or both of the following quantities:

p(y = c | x,Dtrain) for some class c (4.4)

Ep(w|Dtrain)

[∑
c

p(y = c | x,w) log p(y = c | x,w)

]
. (4.5)

To approximate quantity 4.4, we simply take an average over the predicted values

of p(y = c | x,Dtrain) resulting from the different samples from the approximate

posterior (or components of the deep ensemble) [Gal et al., 2017]. More precisely,

p(y = c | x,Dtrain) ≈ 1

T

T∑
i=1

pi(y = c | x,Dtrain) (4.6)

where pi(y = c | x,Dtrain) is the softmax output for class c from the ith sample from

the approximate posterior. For example, to approximate max entropy (quantity
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4.1), we do:

H [y | x,Dtrain] ≈ −
∑
c

(
1

T

T∑
i=1

pi(y = c | x,Dtrain)

)
log

(
1

T

T∑
i=1

pi(y = c | x,Dtrain)

)

which effectively first averages predictions over different draws from the approximate

posterior, then computes the entropy using these averaged predictions.

To approximate quantity 4.5 we first compute entropies, then average across the

resulting entropies from different samples from the approximate posterior [Gal et al., 2017].

More precisely,

Ep(w|Dtrain)

[∑
c

p(y = c | x,w) log p(y = c | x,w)

]

≈ 1

T

T∑
i=1

∑
c

pi(y = c | x,w) log pi(y = c | x,w) (4.7)

where again pi(y = c | x,w) is the softmax output for class c from the ith sample

from the approximate posterior.
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Chapter 5

Method

Our aim is to find out whether active learning can be used to decrease the number

of queries required to align an RL agent with the intentions of a user. Building on

previous work in [Christiano et al., 2017], in which the results were mixed, we form

hypotheses for the possible failure modes of active reward modelling, and experi-

ments to test each hypothesis. Our results suggest that the success of active reward

modelling depends on properties of the environment and task (as specified by the

intentions of the user), which is consistent with the mixed results in previous work.

The first section of this chapter outlines the acquisitions functions and uncer-

tainty estimates that used for active learning, and how they are applied in the reward

modelling setting. Section 2 details the core active reward modelling training pro-

tocol, which we modify in various ways to test our hypotheses. Section 3 explains

these hypotheses, each of which corresponds to a different possible failure mode of

active reward modelling. Section 4 outlines and motivates our choices of how to

implement the method.

5.1 Applying acquisition functions to reward modelling

[Christiano et al., 2017] use only the mean STD acquisition function. We tried each

of the four functions explained in Section 4.2. Each require the ability to get uncer-

tainty estimates by sampling from some appropriate posterior to the reward model
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r̂ that we are optimizing. For this, we follow the deep ensemble approach explained

in Section 4.1 and parametrise r̂ with an ensemble of 5 neural networks. Each net-

work has a different random initialisation and is trained independently, that is to

say, using independent random minibatches for gradient descent. For a given input

(s, a) ∈ S ×A, we compute 5 estimates of r̂(s, a): one for each forward pass through

a network in the ensemble. In some experiments, we also compare this approach

to MC-dropout. We primarily use deep ensembles because it has been shown to

give high quality uncertainty estimates in active learning, and also introduces no

additional hyperparameters. This minimises the number of possible failure modes

of our implementation, facilitating easier diagnosis of unsuccessful experiments.

Applying these acquisition functions to reward modelling requires computing

quantities 4.4 and 4.5 in this setting. Quantity 4.4 becomes:

p(y = 0 | x,Dtrain) = P̂ (σ1 � σ2; r̂)

≈ 1

T

T∑
i=1

P̂i(σ
1 � σ2; r̂i)

=
1

T

T∑
i=1

exp
∑

t r̂i(s
1
t , a

1
t )

exp
∑

t r̂i(s
1
t , a

1
t ) + exp

∑
t r̂i(s

2
t , a

2
t )

p(y = 1 | x,Dtrain) = 1− p(y = 0 | x,Dtrain)

where r̂i(s, a) is the output of the ith component in the ensemble of reward predic-

tors, evaluated on input (s, a). We use P̂i(σ
2 � σ1; r̂i) to denote the annotator’s

probability of preferring σ1 to σ2, using this component of the reward model ensem-

ble, according to equation 3.8. Quantity 4.5 becomes:

Ep(w|Dtrain)

[∑
c

p(y = c | x,w) log p(y = c | x,w)

]

≈ 1

T

T∑
i=1

P̂i(σ
1 � σ2; r̂i) log P̂i(σ

1 � σ2; r̂i) + P̂i(σ
2 � σ1; r̂i) log P̂i(σ

2 � σ1; r̂i)
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5.2 Active Reward Modelling

In this section we present the training protocol we used in our experiments. This

is essentially a modification of Algorithm 1 in [Ibarz et al., 2018], excluding the

imitation learning and adding active reward learning.

Algorithm 3 Active Reward Modelling.

1: Initialise RL agent
2: Initialise neural network r̂ as reward model
3: Initialise experience buffer E for sampling clip pairs
4: Initialise annotation buffer A for storing labelled clip pairs
5: Define acquisition function a((σ1, σ2), r̂)
6: For each round i = 1, . . . , N fix some number mi of labels to request from the

annotator in that round
7: Without updating its parameters, run the agent in the environment and add

experience to E
8: for i = 1, . . . , N do
9: Sample 10mi clip pairs from E

10: Acquire the mi clip pairs that maximise a(., .)
11: Request labels on these clip pairs (from the annotator) and add them to A
12: (Optionally) reinitialise reward model r̂
13: Train r̂ to convergence with the preferences in A, by doing gradient descent

on loss function 3.9
14: Reinitialise RL agent
15: Clear experience buffer E
16: Train RL agent to convergence with rewards from r̂, adding experience to E
17: end for

In our implementation, we use DQN for our RL agent. Thus line 16 represents

calling Algorithm 2 as a subroutine, except with rewards from r̂ instead of from

the environment. Following the majority of previous work, all our experiments will

use a synthetic annotator to label clip pairs i.e. for each clip pair (σ1, σ2) sent for

evaluation, we query the ground truth reward function of the environment for the

sum of the predicted rewards of each state-action pair in each of the two clips, and

return a preference according to which clip has higher total reward. Note that unlike

in previous work, on 13 we reinitialise the RL agent and train it to convergence on

each iteration. This way, we can be sure the DQN agent is not failing due to its

value function having been trained using outdated rewards.
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5.3 Possible failure modes of active reward modelling

In this section, we list our hypotheses about different possible failure modes of active

reward modelling and then explain each in more detail.

1. Not retraining reward model from scratch

2. Acquisition size is too large

3. Choice of acquisition function

4. Choice of uncertainty estimate method

5. Uncertainty estimate quality is poor in general

6. Learning the reward model is too easy

7. Too few trajectories generated by the agent are disproportionately informative

5.3.1 Not retraining reward model from scratch

The implementation of active reward modelling in [Christiano et al., 2017] initialises

the reward model once at the beginning of training, then finetunes that model i.e.

trains on more preferences as they are acquired. However, it is standard practice

in the Active Learning setting to reinitialise and retrain models from scratch after

every acquisition [Kirsch et al., 2019, p. 3]. This is because as training continues,

a model that is only initialised once at the beginning of training will have been

trained on data gathered early during training much more than those acquired late

in training. This may bias the uncertainty estimates; data gathered later may still

have incorrectly high uncertainty. [Christiano et al., 2017] propose to alleviate this

problem by maintaining only the most recent 3000 preferences in the annotation

buffer, but this method does not have a clear theoretical justification, and it is not

obvious that it will yield well-calibrated uncertainty estimates.
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5.3.2 Acquisition size is too large

Batch acquisition means acquiring the top b points that maximise an acquisition

function [Gal et al., 2017]. This may lead to the acquisition of points that are

informative individually, but jointly are much less informative than the sum of

their parts. For instance, [Kirsch et al., 2019, p. 8] show that with acquisition

size 5, BALD underperforms random acquisition on the EMNIST image dataset

[Cohen et al., 2017] when acquiring new images with acquisition size 5. Specifically,

they observe that several classes are under-represented in the acquisitions made by

BALD. [Christiano et al., 2017] use acquisition sizes of up to 5001.

5.3.3 Choice of acquisition function

No singular acquisition function has yet been shown to give consistently superior per-

formance. Some functions seem to work better than others is different settings, and

it is standard practice to compare all the common functions. [Christiano et al., 2017]

use only Mean STD.

5.3.4 Choice of uncertainty estimate method

Likewise, no uncertainty estimate method has been shown to consistently out-

perform the others. Uncertainty estimates for NNs is not yet a well-understood

field, and so best practice is to compare the estimates from different methods.

[Christiano et al., 2017] use only the deep ensemble approach.

5.3.5 Uncertainty estimate quality

Furthermore, it is still an open question under what conditions any of the uncer-

tainty estimate methods give well-calibrated estimates. There are three possible

failure modes which would result in poor quality uncertainty estimates. Firstly,

each method requires specifying several hyperparameters; if these are inappropriate,

1The first batch of acquisitions is of size 500. For subsequent acquisitions, it is unclear what
acquisition size they use.
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then the uncertainty estimates will be of poor quality. Two examples of hyper-

parameters are the number of components of a deep ensemble and the number of

samples with different randomly dropped out weights in MC-dropout. For these, us-

ing higher values tends to give more accurate uncertainty estimates, whilst incurring

a larger computational cost.

Secondly, it is not clear that the standard acquisition functions can be applied

out of the box to learning in the preference space. Consider the following example:

we are deciding whether to acquire clip pair c1 = (σ1, σ2) or c2 = (σ3, σ4) to acquire.

Suppose further that the reward model is uncertain whether c1 has label 0 or 0.5;

and uncertain whether p2 has label 0 or 1. Now, amean STD(c2, r̂) is higher than

amean STD(c1, r̂), and thus we will acquire c2. Yet, when learning in the preference

space, using disagreement between models in an ensemble as the basis for an acqui-

sition function may not capture all that we care about. It may be important, for

example, to acquire clip pairs that allow the model to make deductions based on

transitivity of the preference relation. For suppose that we have already acquired

some clip pair (σ0, σ1). Then acquiring (σ1, σ2) would in effect give for free the

label of (σ0, σ2), whereas the acquisition of (σ3, σ4) would not. Thus, we may need

a better proxy than simply disagreement for active learning in the preference space.

Thirdly, my implementation of the acquisition functions may contain bugs.

5.3.6 Learning the reward model is too easy

It is worth noting that sometimes random acquisition just does perform strongly.

Specifically, at the beginning of training, the uncertainty estimates used by the

acquisition function may have biased noise, while random acquisition has no such

bias. In other words, the uncertainty estimates are of poor quality towards the

beginning of training. Accordingly, we see that in Figure 1 of [Gal et al., 2017],

there is no significant difference between the performance of BALD and random

acquisition prior to acquiring the 50th example. If, for a given task and environment,

a high quality reward model can be learned with a small number of examples, then
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we should not expect active learning to show improvement over a random baseline.

5.3.7 Too few trajectories generated by the agent are dispropor-

tionately informative

An important difference between active supervised learning and active reward mod-

elling is that in the latter, the objects we acquire are clip pairs rather than, for

example, single images. This means that evaluating an acquisition function over the

dataset is a complexity O(n2) operation, for n the number of clips acquired. There-

fore, the standard active learning procedure of evaluating the acquisition function on

each point in the pool dataset and picking that which maximises it, quickly becomes

unfeasible as the dataset grows in size. To circumvent this issue, in order to acquire

k clip pairs, [Christiano et al., 2017] propose randomly sampling 10k clip pairs and

selecting the k with the highest score according to the mean STD acquisition func-

tion. However, it is not clear that this method suffices to find clip pairs that are

more informative than random acquisition: a factor of 10 may simply be too small.

If it is important to query the annotator about behaviour that occurs rarely, this

behaviour may never be included in the pool of clip pairs over which the acquisition

function is evaluated. This is related to exploration problems. In general, RL meth-

ods struggle to solve tasks which require difficult exploration, for example the Atari

game Montezuma’s Revenge. However, exploration is a doubly hard problem for RL

from preferences: not only does the agent have to explore states of the environment

which are difficult to reach, but also the trajectories generated in that exploration

have to be sampled at random into the pool of clip pairs over which the acquisition

function is evaluated.

5.4 Implementation Details

Our implementation is available here. The training protocol is implemented mostly

in Python [Van Rossum and Drake Jr, 1995]. We use gradient descent to optimize

the parameters of the deep Q-network and reward model. Pytorch [Paszke et al., 2017]

https://github.com/samsarana/active-reward-modelling
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is an open source machine learning library, built on top of Python, which provides

tools to perform automatic differentiation. This allows us to compute gradient with-

out differentiating by hand our loss function with respect to our model parameters.

We implement the buffers for collecting agent experience, storing annotated clips

in SciPy [Jones et al., 2001], which is also built on top of Python. This gives finer

control over data representation and sampling.



Chapter 6

Experiments and Results

6.1 CartPole experiments

Our first set of experiments use the CartPole environment, a classic RL task for-

mulated in [Barto et al., 1983]. As shown in Figure 6.1, the environment features

a pole attached to a cart, which moves on a one-dimensional line. The pole starts

upright; the objective is to keep the pole from falling by applying a force of +1 or −1

to the cart. The episode ends when the cart is more than 2.4 units from the centre

or the pole falls to more than 15 degrees from vertical. We used the implementation

of this environment provided by OpenAI Gym [Brockman et al., 2016b] to run our

experiments.

Figure 6.1: The CartPole environment [Brockman et al., 2016a]

As mentioned in Section 5.2, clips are annotated according to the ground truth
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reward function of the environment1. This reward function is hidden from the agent;

it receives only rewards from the reward model, which is trained on preferences

according to the ground truth reward. To evaluate the performance of agents, we

also use the ground truth reward function as in [Christiano et al., 2017]. As with

many RL environments provided by OpenAI Gym, there is a defined threshold above

which the agent is considered to have “solved” the environment. Our performance

metric is the number of preferences required for an agent to reach this threshold.

Figure 6.2 shows our first attempt to train agents using reward modelling in

CartPole. As the reward model is trained on an increasing number of labels, the

mean episode return of the agents tends to improve. For clarity, the plot shows

only random acquisition and BALD, though we tried all four acquisition functions

and found no significant differences between them. We replicate the finding in

[Christiano et al., 2017] that active learning does not significantly improve on ran-

dom acquisition. Our hypotheses about the cause of this negative result will be

tested in the following sections. For reference, the mean episode return achieved

by a standard RL agent (which can solve CartPole perfectly); taking random ac-

tions (random policy); and training on a randomly initialised reward model (random

reward model) are also shown.

We found that even in a task as simple as CartPole, the performance of agents

trained via reward modelling has high variance and low stability. For instance,

using rewards from a reward model trained on more labels sometimes leads to lower

mean episode return. The results in Figure 6.2 were averaged over 40 repeats,

which was required to decrease standard error from its initial high value. This

suggests that whilst reward modelling has been shown, in some sense, to “work”, it

1The OpenAI Gym implementation of CartPole gives +1 reward on every time step. Since we fol-
low the approach taken in [Christiano et al., 2017] where all clip pairs are of equal length, using this
reward for the synthetic evaluation of clips would give the same total reward to every clip. There-
fore, we actually give preferences according to the reward function given in [Sutton and Barto, 2018,
p. 59]: 0 on every time step, except for failure steps—when the cart moves more than 2.4 units from
the centre or the pole falls to more than 15 degrees from vertical—for which −1 is given. Note,
however, that we use the OpenAI Gym reward for testing agent performance, because there is a
defined threshold for “solving” the environment according to this reward function, which is a useful
performance metric.
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is not a mature technology and requires much more development before it could be

applied to more real-world tasks. High variance and low stability is also reported by

[Christiano et al., 2017, p. 7], but they do not address the issue in much depth. It is

worth noting that deep RL in general suffers from these same problems [Irpan, 2018].
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Figure 6.2: Mean episode return of agent trained via reward modelling using random acquisition
and BALD. The performance of standard RL, a random policy, and an agent trained on a randomly
initialised reward model are also shown. Results are averaged over 40 runs except for the random
reward model condition which is averaged over 20. Error bars show standard error. Note that the
performance of the agents trained via reward modelling is worse than those in the following sections
due to less extensive hyperparameter tuning.

6.2 Hypothesis 1: Reward model retraining

Our first experiment tests the hypothesis that not retraining the reward model

from scratch after every acquisition gives low quality uncertainty estimates. We

run the training protocol given in Algorithm 3 twice in the CartPole environment,

changing whether the reward model is reinitialised in this manner. On each round,

5 preferences are acquired.

As shown in Figure 6.3, we find that under both conditions, random acquisition
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and BALD show similar performance, but reward model retraining improves the per-

formance of both. Therefore, whilst it is possible that the uncertainty estimates are

harmed by not retraining, it is unclear how much of BALD’s performance improve-

ment is due to reward model retraining being better practice in general, because the

learned model parameters give equal weight to all the acquired data (the reason for

which we see improvement in random acquisition, too).
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Figure 6.3: Number of labels required to solve CartPole by reward modelling with random ac-
quisition and BALD, with and without retraining reward model after each acquisition. Results are
averaged over 20 runs; error bars show standard error.

6.3 Hypothesis 2: Acquisition size

Next, we test the hypothesis that making acquisitions of size greater than 1 harms

the performance of BALD-driven reward modelling. We run the training protocol in

CartPole with acquisition size 10 and 1, retraining the reward model from scratch

after each acquisition, and find that performance improves when acquisition size is

reduced from 10 to 1, as per Figure 6.4. This is good evidence that in the reward

modelling setting, when the acquisition size is too large, BALD acquires clip pairs

that are individually informative, but are jointly less informative than the sum of

their parts. So we have good evidence that using too large an acquisition size is one
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failure mode of active reward modelling.
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Figure 6.4: Number of labels required to solve CartPole by reward modelling with BALD, using
acquisition sizes 1 and 10. Results are averaged over 20 repeats for acquisition size 10 and 6 repeats
for acquisition size 1; error bars show standard error.

6.4 Hypotheses 3 and 4: Uncertainty estimate method

and acquisition functions

Having established that—in the CartPole environment—not retraining the reward

model from scratch after every acquisition, and using large acquisition sizes harms

the performance of active reward modelling, we retest all four acquisition functions

with reward model retraining and acquisition size 1 compared to the random acqui-

sition baseline. We also evaluate random acquisition using an ensemble of reward

models, to ensure that any performance gains from active learning are not simply due

to ensembling. Finally, we compare using MC-Dropout for estimating uncertainty

with the ensemble approach taken so far.

Our results, summarised in Figure 6.5, show improved performance in general,

but still no significant difference between random acquisition and active learning2.

2Note that BALD and random outperform their best results in the first two experiments because
in between these experiments we performed extensive DQN hyperparameter tuning. Additionally,
we found that not retraining the agent from scratch on each round also impairs performance, as
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This provides evidence against the hypothesis that the choice of acquisition function

or uncertainty estimate method has a significant effect on the performance of ac-

tive reward modelling. Contrary to the suggestion in [Christiano et al., 2017, p. 6],

merely changing these methods does not make active reward modelling improve on

random acquisition, at least in the CartPole environment.
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Figure 6.5: Number of labels required to solve CartPole by reward modelling using various acqui-
sition functions. The performance of using random acquisition with an ensemble of reward models,
and BALD with uncertainty estimates from MC-Dropout with is also shown. Results are averaged
over 20 repeats; error bars show standard error.

In the experiments that follow, unless otherwise stated we continue to do reward

model retraining and use acquisition size 1. Incorporating the latter modification

by acquiring only 1 label per round, i.e. training the agent on the new reward

model after every new acquisition, would make each experiment take a long time to

run because agent training is a costly procedure. Therefore, we continue to acquire

multiple labels per round, whilst using acquisition size 1. The procedure for doing so

mentioned in Section 5.2. Being independent of the reward modelling aspect of the training protocol,
such modifications affect all conditions equally and thus do not invalidate the results; they merely
help to speed up experiments because agent performance performance is not harmed by having
been trained (without subsequent reinitialisation) on a lower quality reward model.
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is shown in Algorithm 4; this essentially replaces line 9 to 12 of the original training

protocol given in Algorithm 3. The idea is simple: we repeatedly acquire 1 clip pair,

query its label, reinitialise the reward model and train it to convergence, until mi

clip pairs are acquired and we proceed to agent training, and then onto the next

round3.

Algorithm 4 Acquiring a batch of clip pairs with acquisition size 1.

1: Sample 10mi clip pairs from E
2: repeat
3: Acquire the single clip pair that maximises a(., .)
4: Request label on this clip pair (from the annotator) and add it to A
5: Reinitialise reward model r̂
6: Train r̂ to convergence with the preferences in A, by doing gradient descent

on loss function 3.9
7: until mi clip pairs have been acquired

6.5 Hypothesis 5: Uncertainty estimate quality

Active reward modelling may be unable to outperform random acquisition due to

poor quality uncertainty estimates, due to any of the reasons discussed in Section

5.3.5, or an implementation bug.

To test these hypotheses, we set up an experiment in which many duplicate clip

pairs are added to the pool dataset. Essentially, this adds redundancy to the pool:

once one of the duplicated clip pairs is acquired, no further information is gained

about the annotator’s latent reward function by acquiring exact copies of it.

More precisely, our experimental setup is to run the training protocol with both

random acquisition and BALD, acquiring 5 labels per round (using acquisition size

1), with the following modification: after sampling 10 × 5 = 50 clip pairs from the

experience buffer E (line 1 in Algorithm 4), we make 50 identical copies of one of the

clip pairs. Now, this set of 100 clip pairs is used as the pool dataset over which the

3Because reward model training also takes time, this modification will still slow down the training
protocol. Future work could investigate whether a recent improvement on the BALD algorithm,
called BatchBALD [Kirsch et al., 2019], could successfully optimize this subroutine by removing
the need to iteratively acquire single examples and retrain the model.
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acquisition function is evaluated on line 3. We call this setup Repeated CartPole4.

Modifying the procedure in this way will impair the performance of random

acquisition. In expectation, half of the 5 randomly sampled clip pairs will be exact

duplicates, meaning that the reward model is trained on a poorer quality dataset

due to the redundant acquisitions. However, the performance of BALD should be

unimpaired, because after acquiring one of the duplicate clip pairs, the information

gained by acquiring the same clip again is zero, so BALD should not reacquire the

example, but instead pick 4 other clip pairs from the original set. If, on the other

hand, BALD is giving poor quality uncertainty estimates, then it will erroneously

acquire duplicate examples and so the performance of BALD will also be significantly

impaired in Repeated CartPole.

As shown in Figure 6.6, we find that BALD’s performance is not significantly

harmed, whilst random acquisition performs poorly5. This provides some evidence

that poor quality uncertainty estimates are not a failure mode of BALD in this

environment: if they were, then we would expect BALD to perform as poorly as

the random baseline in Repeated CartPole. In particular, hyperparameter tuning or

bugs in the code are unlikely to be crippling the method, and it seems that standard

acquisition functions can be applied out-of-the-box in the preference space.

6.6 Hypothesis 6: Learning the reward model is too

easy

It may be that the CartPole task is simply too easy for active reward modelling

to show improvement over random acquisition. As mentioned in section 5.3.6, we

4This experiment was inspired by the Repeated MNIST setup in [Kirsch et al., 2019], which
makes a somewhat similar modification to test a different hypothesis.

5The performance of BALD and random acquisition in the standard CartPole are both substan-
tially better than in previous experiments. Having noticed the high variance of repeated experi-
ments, we began testing agent performance several times on each iteration of the training protocol,
rather than just at the end of agent training (testing agent performance means measuring mean
episode return of the current policy in greedy forms, i.e. without taking random actions some ε
fraction of the time, over a fixed number of episodes, typically 100). This follows the testing regime
used in [Mnih et al., 2015]. Since this change is independent of the reward modelling aspect of the
training protocol, it does not invalidate our previous results.



CHAPTER 6. EXPERIMENTS AND RESULTS 53

0

10

20

30

40

50

60

70

BALD Random

# 
la

b
el

s 
to

 s
o

lv
e

(a) Standard CartPole
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(b) Repeated CartPole

Figure 6.6: Number of labels required to solve two variants of CartPole, using BALD and random
acquisition functions for sampling clip pairs. Results are averaged over 20 repeats; error bars show
standard error.

CartPole Repeated CartPole
Average MI of BALD over pool dataset 0.06± 0.01 0.16± 0.02

Table 6.1: Mean mutual information over the pool dataset in CartPole and Repeated CartPole
experiments, averaged over all acquisitions, with standard error from four repeat trials.

expect uncertainty estimates to be of poor quality until approximately 50 examples

have been acquired. So, given that reward modelling can solve CartPole with around

30 labels, we conjecture that BALD’s inability to outperform random acquisition in

this setting can be explained by the fact that learning the reward model for this

environment and task is simply too easy.

We gathered some evidence for this conjecture by comparing the mutual infor-

mation scores in Repeated CartPole with those in standard CartPole. Since there

are many redundant examples in the pool dataset of Repeated CartPole, we ex-

pect the average mutual information over this dataset (if uncertainty estimates are

well-calibrated) to be lower than that in standard CartPole. However, as shown in

Table 6.1, we find the opposite result. This supports the conjecture that the uncer-

tainty estimates are of low quality given this small number of examples (though they

are clearly of high enough quality of outperform random acquisition for Repeated

CartPole).

To summarise the results so far, we have shown that in the CartPole environment,
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not reinitialising the reward model and using large acquisition sizes harms active

reward modelling, and the former problem also harms non-active reward modelling.

This provides some evidence for hypothesis 1 being a failure mode of active learning

in this environment, and good evidence for hypothesis 2 being a failure mode. With

these changes, however, active reward modelling still cannot outperform random

acquisition, so these are not the only failure modes. We then provided evidence

against hypotheses 3 and 4 by comparing four common acquisition functions and

two uncertainty estimates methods and finding that no combination improves on

random acquisition. Finally, the Repeated CartPole experiment suggests that the

uncertainty estimates are of questionable quality in CartPole, where only a small

number of examples are required to learn a good reward model. Thus, hypotheses

6 and 7 remain plausible failure modes.

Now, we seek to gather more evidence for these results by trying to replicate

them in a different environment.

6.7 Gridworld experiments

A gridworld is a simple two-dimensional environment of size 4x4, containing an

agent (blue), one goal cell (green) and an optional lava cell (red). On each time

step, the agent receives an observation of the environment, which is an RGB pixel

value for each cell, and takes one of four actions (up, down, left or right). The

environment gives rewards of +1 for reaching the goal, −1 for moving onto the lava,

and 0 otherwise. Episodes terminate when the goal or lava is reached, or when 50

time steps have passed. An example state of the environment is shown in Figure

6.7. This is similar to the environments used in [Kenton et al., 2019] and here. We

define solving this environment as getting a mean episode return of greater than

0.95 across 100 episodes, equivalent to reaching the goal in 95 of 100 episodes.

The simplest configuration of this gridworld has no lava cell and a goal cell

with a fixed location. We use this simplest configuration to try to replicate the

finding that in simple tasks and environments, active reward modelling is unable

https://github.com/awjuliani/DeepRL-Agents
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(a) Gridworld with one goal cell.
(b) Gridworld with one goal and
one lava cell.

Figure 6.7: Two examples of possible gridworld environments. The blue, green and red cells are
the agent, goal and lava, respectively.

to outperform random acquisition. Specifically, we fix the goal location to be in

the bottom left corner, and the agent starting location to be in the top left corner,

corresponding to Figure 6.7a. By a quick simulation, we found that 17% of the

clips generated by an agent taking random actions in this environment have total

reward +1. This should mean that a decent proportion of the clip pairs acquired

at random will contain information about synthetic annotator’s preferences and so

non-active reward modelling should be able to solve the environment with very few

acquisitions, whilst BALD should suffer from poor quality uncertainty estimates,

having only been trained on a small number of examples. Indeed, as seen in Figure

6.8 the results affirmed this. This is consistent with the finding that hypothesis 6

is one remaining failure mode. We also observe that BALD’s mutual information

estimates are high on acquisitions 10-30, but low on 0-10 and 30-40. Their being

(erroneously) low on 0-10 provides additional evidence for this finding.

6.8 Hypothesis 7: Too few trajectories generated by the

agent are disproportionately informative

The next reasonable step to prune the hypothesis space is to make the task harder

such that the reward model harder to learn. This will provide evidence about

whether hypothesis 6 is the only remaining failure mode. So, we introduce a lava

cell into the gridworld, also with a fixed position, placing it close to the goal cell, as
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Figure 6.8: Number of labels required to solve the gridworld shown in Figure 6.7a via reward
modelling using BALD and random acquisition. Results shown are only one run.

shown in Figure 6.7b. By a simulation, we found that around 95% of clips sampled

from the trajectories of a random policy have zero return, around 1% have return

greater than or equal to +1, and around 4% have return less than or equal to −16.

Because of the infrequency of clips with positive return, random sampling will collect

few such clips, and therefore non-active reward modelling will struggle to learn the

annotator’s reward function. However, since such clips contain vital information,

active reward modelling should acquire these clips. If it does not, this is evidence

that hypotheses 5 or 7 are failure modes.

As shown in Figure 6.9, the results provides good evidence that the uncertainty

estimates in active reward modelling are of good enough quality to outperform ran-

dom acquisition in this more complicated environment (against hypothesis 5) and

that enough trajectories generated in this environment are disproportionately infor-

6Note that we modified the clip length to be 1 for this experiment, because we realised that single
state-action pairs (rather than sequences, like in CartPole) is the level of granularity on which most
information about the task is contained.
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Figure 6.9: Number of labels required to solve the gridworld shown in Figure 6.7b via reward
modelling using random acquisition, and mean STD, BALD and variation ratios with acquisition
size 1. BALD with acquisition size 10 is also shown. Results are averaged over 3 random seeds.

mative (against hypothesis 7). We also evaluate BALD using acquisition size 10,

and replicate the finding of section 6.3 that this hurts the performance of BALD.

Surprisingly, variation ratios performs significantly worse than mean STD, and us-

ing an ensemble in random acquisition seems to hinder performance relative to not

ensembling.

However, we remain somewhat unsure about hypothesis 7. Whether this is a

failure mode depends on the frequency with which informative clip pairs are gener-

ated by the agent. In turn, this frequency depends on the task and environment,

as well as the agent’s exploration method and the way clip pairs are annotated.

There certainly are environments in which too few informative trajectories are in-

formative, as seen in Figure 3 of [Christiano et al., 2017]: the difficulty of passing

other cars in Enduro by random exploration means that few or no clip pairs used

to train reward model actually feature good behaviour7. Active learning would not

7This is only true when the ground truth reward is used to annotate the clips. Human annotators
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improve over random acquisition in this case. The open question is: as reward mod-

elling is scaled to more complicated environments and tasks, will the method used in

[Christiano et al., 2017] to avoid evaluating the acquisition function over the entire

set of clip pairs (which has size O(n2) for n clips from which the pairs are sampled)

suffice to identify informative clip pairs? Or, do we tend to see informative pairs

missed out? If so, then the success of active reward modelling will require some new

method to efficiently find informative clip pairs in a set of size O(n2).

prefer clips in which even small progress is made towards passing other cars, which circumvents this
issue. Nonetheless, the basic problem remains that on some tasks, random exploration may not
induce behaviours that have sufficient differences in quality for even human annotators to distinguish
between.



Chapter 7

Conclusions

7.1 Summary

The aim of this dissertation was to explore the environments and tasks in which

active reward modelling can improve on a the baseline of random acquisition. We

summarise our findings as follows. (1) If the task and environment can be learned

by reward modelling with a small number of labels, then active reward modelling is

unlikely to show improvement over random acquisition because uncertainty estimates

tend to be poorly calibrated with a small number of labels. (2) Else, if the agent

rarely generates trajectories on which the preferences give good information about

the annotator’s latent reward function, then the pool dataset will contain even fewer

informative clip pairs. In the absence of informative clip pairs in the pool dataset,

active reward modelling will not beat random acquisition. Indeed, standard reward

modelling is similarly prone to failure in such environments. (3) Else, if the agent

generates informative trajectories with a frequency such that some informative clip

pairs end up in the pool dataset, then we expect active reward modelling to improve

on random acquisition.

59
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7.2 Future Work

Firstly, as argued in section 6.1, reward modelling is not a mature technology and

requires much development before it could be applied to more real-world tasks. In

particular, there is high variance and low stability between repeats of the same

experiment with different random seeds. It would be useful to determine whether

this is purely due to the brittleness of current deep RL methods. If so, we can expect

these instabilities to be resolved with general progress in deep RL. Otherwise, further

work on the brittleness of reward learning will be required. One might gather data

on this by finding how well the current reward learning approach generalises to

scenarios not in the training data, and compare its generalisation ability to that of

deep RL.

Secondly, as explained in section 6.8, we would like to know if some new method

of efficiently finding informative clip pairs in a set of size O(n2) is required. If so,

some possibilities include: modifying the method of fitting the reward model to be

based on TrueSkill [Herbrich et al., 2007] instead of Elo, which explicitly maintains

uncertainty estimates for each “player” (i.e. clip pair); pairing each clip in the set

with some reference clip and estimating the uncertainty of these pairs; or specifi-

cally generating behaviour on which the preferences will be informative, rather than

always trying to maximise expected return.

Finally, and most importantly, I am uncertain about how the results about the

failure modes of active reward learning in my testing environments will transfer to

more complicated environments. Specifically, hypotheses 6 and 7 have strong depen-

dencies on the environment. Given this, it seems important to think clearly about

the desiderata for the next set of environments in which reward modelling technol-

ogy is developed. Innovation should proceed in environments which increasingly

resemble the real world as opposed to games, otherwise any progress may simply be

overfitting to particular properties of the environments in which the “innovation”

was tested. For instance, we would like the environment to have a ground truth re-

ward function such that the preferences it induces are qualitatively similar to those
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of a human annotator (in hindsight, my gridworld experiments, which used a sparse

ground truth reward function, were far from ideal for this reason).

7.3 Relation to Material Studied on the MSc Course

The Advanced Machine Learning course was the most closely related to the material

covered in this dissertation. I learned the basics of implementing deep learning

algorithms, as well as an overview of reinforcement learning and uncertainty in

deep learning. In Computational Learning Theory, I learned to be more rigorous

in formalising and reasoning about algorithms that learn from experience. The

Probability and Computing course was also invaluable in equipping me with a better

understanding of probability theory.

7.4 Personal Development

My most significant personal development in undertaking this project was to culti-

vate a shift in attitude when an idea or implementation does not work as expected.

Towards the beginning of the project, I made desperate attempts to make active

reward modelling give the results I wanted. Later on, I began to pay closer atten-

tion to exactly what was going wrong, and use these findings to inform my next

actions, rather than fighting against them. I learned to notice confusion, rather

than avoiding it. For instance, early in the code development, random acquisition

with an ensemble was consistently underperforming random acquisition without an

ensemble. I avoided this problem for some time, but eventually dug deeper and

realised that not implementing per-component normalisation of reward models was

impairing performance, which turns out to be crucial for the proper performance

of the algorithm. Similarly, I spent a week running experiments using the OpenAI

Gym environment Acrobot. Sometimes, this environment was solved with almost

no reward model training, which I initially passed over as a fluke. Only when the

results began to look increasingly dubious did I look deeper into these runs and find



CHAPTER 7. CONCLUSIONS 62

that Acrobot can actually be solved (for some random seeds) using a randomly ini-

tialised reward model, rendering invalid all findings in that environment. Following

confusions like this as soon as they arose would have resulted in faster and deeper

progress on my research question.
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